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Necessary to Exploration

In order to interact with the environment, a

robotic system needs to recognize the means

through which, such interaction is happening.

For a humanoid robot this is the case of its

hands.

Exploration is the best way for an autonomous agent to obtain information

regarding the surrounding environment.



Unique Object

Even if inaccurate, this expedient can be exploited to apply supervised learning 

techniques in a less supervised way

Motors state: ON Motion Detected

Hand is probably 

in the FoV

Visual motion detection and motor information can be combined to roughly

infer whether the robot’s hand is present in the Field of View.

The hand is a very unique object to learn. The poses in which it appears to the

robot are strongly connected to the current joint and motor states.



Online Learning

Changes in an unstructured environment are unpredictable.

In order to keep a robust representation of the world, an autonomous agent

must be able to integrate previous knowledge with new data as it arrives.

We are after an online framework able to constantly keep track of the robotic

hand’s structure even when it is subject to changes in appearance. (e.g.

illumination, rotation).
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Multiple Instance Learning

• In the MIL framework, examples are seen as bags of instances.

• A bag is positive if it contains at least one positive instance

• The individual label of an instance is not known. Only the label of the entire bag

Goal: Correctly classify the bags without knowing exactly which instances were

responsible for the positive/negative label of the bag.

Positive instance
Positive bag

Negative instance
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strong classifier.
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AdaBoost adopts an iterative greedy strategy to select which weak learners
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MIL & Boosting: MIL balls

A bag is a collection of instances in the feature space.

We define a MIL weak learner as a ball centered on a point in the feature space.

A ball classifies positively only the bags that it intersects.

Bag instance

Feature Space

No intersection:

Negative classification

Intersection:

Positive classification

Auer et al. 2004
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Feature Selection

In an online framework, useful instances can arise from any bag in any moment.

Example: the object of interest rotates and shows previously hidden features.

On the other hand, the online boosting algorithm requires all the weak learners to

be determined a priori. It is not possible to extract new ones from the data.
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Learning principle: When a novel training sample is presented to the selector, 

each of the weak learners in its pool is trained accordingly. 

The weak learner with lowest error rate is selected.

The weak learner with worst classification performance is 

substituted with a new one.
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Hand Detection

Different experimental conditions:

• Background: Uniform Vs Cluttered.

• Labeling: Manual Vs Automatic.

• Order: Natural Vs Shuffled.
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Hand Detection: ROC curves
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Conclusions

• Multiple Instance Learning needs only weak supervision over data in

order to be trained (e.g. positive or negative label over entire samples).

• The MIL paradigm allows to deal with inaccurate and possibly noisy

training data (e.g. coarse labeling of images).

• In our framework learning is performed online in order to adapt to

potential changes in the scene (e.g. illumination or orientation).

• Experiments were conducted on a real problem and under quite hard

conditions (e.g. cluttered background). Nevertheless online performances

remained comparable to those of batch algorithms.
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