Xantrex
Multiple Output Power System
XMP 2600
The Xantrex Modular Power System (XMP 2600) is a multiple-output programmable DC power supply system. The system is an ideal solution for ATE applications.

A 19" x 5 1/4" (3U high) mainframe, the XMP includes a controller and can be configured with a selection of up to eight modules. For added flexibility, modules of different power ratings can be combined within the same XMP mainframe. The system automatically reconfigures itself when new modules are installed.

The modules come in a variety of sizes and power ratings: 1/8 width, ranging from 160 W to 720 W; 2/8 width, ranging from 640 W to 1.6 kW; and 3/8 width high power modules ranging from 2.8 kW to 3.2 kW, limited by the XMP mainframe power envelope.

The XMP mainframe can be populated with modules having an overall power of several kW. Within the power envelope of the XMP mainframe, output power can be drawn from different modules at different times. No other single power system has this flexibility.

All XMP functions can be programmed through a GPIB (IEEE-488) or RS-232 interface, or manually commanded and monitored from the front panel for convenient hands-on operation. LabVIEW®, LabWindows/CVI®, TestPoint® and AtEasy® drivers are available for easy integration of these functions in a customized system. The XMP comes with a convenient virtual panel and tutorial software.
The XMP offers power flexibility, allowing users to draw available power from different channels at different times from the same power system.

It is available with 2.4 kW continuous and 2.6 kW intermittent usable power.

To ensure the power envelope is not violated, the XMP controller constantly monitors the power system. In case of a brief violation, it provides up to 2.6 kW of overall power for up to 30 seconds and automatically alerts the host. In case of a severe violation (above 2.6 kW), it will automatically shut down the power system.

An XMP mainframe will hold 6 kW of power modules.

Product Features

- GPIB or RS-232 controlled
- 19" x 51/4" (3 U high) mainframe with controller to accommodate up to 8 modules
- 1/8, 2/8, and 3/8 width modules available ranging from 8 v to 160 v and 1.25 A to 80 A
- Individual module processor control
- Power envelope: 2.4 kW, 2.6 kW intermittent
- Power envelope monitoring and control
- Polarity and isolation relays
- Readback of voltage and current
- External synchronization
- Extensive DUT protection features
- Workpoint window warning
- Multichannel 10 store/recall locations
- 99 steps auto sequencing
- Software-based calibration
- Local panel and keyboard
- Low ripple and noise
- Power Factor Correction (PFC), wide range mains operation
The XMP is programmable by using a simple set of commands via GPIB or RS-232C communication links. Its extensive command set covers all of the XMP features and complies with the IEEE488.2 standard. LabVIEW®, LabWindows/CVI®, TestPoint® and AtEasy® drivers are available for easy integration.

Programmable Functions

- Voltage and current setting
- OV and OC protection
- Individual and global output ON/OFF
- Built-in output relays
- Five current limit types
- Work point window warning
- Re-programming delay
- Local panel lockout
- Power-on values retain or initialize
- Multi-channel store and recall settings
- Output synchronization
- Maskable events and SRQ generation
- Selectable response to controller's communications time-out
- Versatile modules shut-down on-fault setups
- Two-level, six frequencies simulated ripple

Readback Functions

- Load voltage, output voltage and load current readback
- All programmed parameters
- System and channel status
- System and channel errors
- Synchronization Command Execution

Standard Power Modules

(Custom modules available upon request)

<table>
<thead>
<tr>
<th>Width:</th>
<th>1/8</th>
<th>1/8</th>
<th>1/8</th>
<th>2/8</th>
<th>3/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-8 V</td>
<td>20 A</td>
<td>40 A</td>
<td>80 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-18 V</td>
<td>10 A</td>
<td>20 A</td>
<td>40 A</td>
<td>80 A</td>
<td></td>
</tr>
<tr>
<td>0-36 V</td>
<td>5 A</td>
<td>10 A</td>
<td>20 A</td>
<td>40 A</td>
<td>80 A</td>
</tr>
<tr>
<td>0-80 V</td>
<td>2.5 A</td>
<td>5 A</td>
<td>9 A</td>
<td>20 A</td>
<td>40 A (*1)</td>
</tr>
<tr>
<td>0-160 V</td>
<td>1.25 A</td>
<td>2.5 A</td>
<td>4.5 A</td>
<td>10 A</td>
<td>20 A (*1)</td>
</tr>
</tbody>
</table>

*1 – The maximum output power is limited by the mainframe controller.

A custom power system for ATE applications

The XMP is a single chassis solution to meet your power needs. Simply customize a system by choosing modules with desired voltage and current ratings. You can even combine high and low power modules in the same XMP mainframe.
Offloading the ATE controller

Auto Sequence Operation
Test sequences can be executed for autonomous operation by using recall states of varying duration.

Work Point Window Warning
The XMP can continuously monitor the voltage and current to stay within programmed levels, offloading your controller from routine checks. As a limit value is reached, an SRQ is generated over the GPIB and the event is reported.

Multichannel Store and Recall Settings
Up to ten multi-channel settings can be stored and recalled, either manually or via the GPIB (or RS-232) control interface. The values are stored in a battery backed up memory.

Ramp Function
When searching for certain DUT reaction points within a range, ramp up or down (voltage or current) by programming initial value, time interval and final value. This helps to avoid tedious programming loops and traffic over the GPIB control interface.

OPERATION COMPLETE Indication
The system reports an OPERATION COMPLETE event, avoiding unnecessary fixed delays or check loops. This feature also provides automatic synchronization (e.g. change the output of module 2 when module 4 has finished ramping).

Automatic Polarity Reversal
When enabled, a module’s output voltage can be programmed using a signed value (e.g. -3.52), eliminating the need to check for the requested polarity and to send a polarity command.
System Functions

Synchronization

The synchronization of a single or multiple operation can be achieved with hardware or software.

Hardware trigger-in (or software trigger command) allows synchronization of the multi-channel reaction. Just "ARM" the modules and program the new parameters. Execution takes place at trigger arrival.

The OPERATION COMPLETE mechanism provides synchronized serialization of operations.

A sync-out provision for COMMAND PERFORMED external synchronization avoids fixed delays and gives the ATE system the fastest performance.

ON/OFF Control

The XMP system can be shut down by applying a voltage or by shorting two pins at the ON/OFF rear connector. Positive or negative logic can be used. Applications include PANIC SWITCH, hardware emergency shutdown, etc. An output floating contact shuts down external units and displays the ON indication.

Polarity and Isolation Relays

Relays for output disconnection and for polarity reversal are standard (modules without relays are available). The relays may be operated by specific user requests or programmed to operate automatically when appropriate.

Simple, Software-Based Panel Calibration

The XMP can be calibrated on site and takes only minutes using a calibrated multimeter, a calibrated shunt and a load. The calibration mode access is password protected.
According to the load (DUT), the user may select the most suitable protection from the following five options:

- Constant voltage with current limited to the Iset value, or Constant Current with voltage limited to the Vset value.
- Foldback to 30% of the current limit for low short-circuit current.
- Constant voltage with current limit and foldback for special power supply simulation.
- Retry: When the current limit is reached, the corresponding output is shut down for three seconds, then restored again. Following five consecutive current limit events, the corresponding output will shut down.
- Single event shutdown for extra-sensitive loads: when the current limit value is reached, the corresponding output is shut down.

Control board for driving external hardware

An optional 1/8-size driver module can be combined with the power modules in the mainframe for easy control of external hardware such as relays. The module offers eight open collector outputs capable of sinking up to 1 A each, along with auxiliary 12 V, 24 V and 48 V outputs.
The XMP 2600 power system can expand to provide up to 16 outputs. It delivers up to 38 kW under a single GPIB address (or RS-232 link), by adding one or more extension slave units to the XMP mainframe with controller. Simply interconnect between the master chassis and the slave chassis via the net (proprietary communication data link) connector at the rear panel. There are no operational differences between internal and external power modules.
ON/OFF automatic circuit breaker. Self-test procedure is carried out at power-on.

LCD Display
Used for local control over the Power Supply System and gives "at a glance" status of the whole system. Selected Programming Menu items are clearly displayed along with guiding information.

LED Indicators
Depict the state of the communication channel and emphasize error conditions. The ALARM indicator attracts attention to faults and warnings so none will be missed.

Modes of Operation
Change by a touch of a key. One key moves in and out of the programming, status and the set-up modes of operation.

Ten Store/Recall Settings
Achieved through the use of ten sets of non-volatile save areas holding all programmed parameters, not including the power-on state memory.

Numeric Keys
Values can be entered directly using the entry keys or "flipped" (increment / decrement) using the selection keys.

Arrow Keys
Provides horizontal (left/right) and vertical (up/down) browsing for easy XMP programming and monitoring.

One Key Output ON/OFF
Enables emergency shutdown of the whole power supply and a synchronized turn on. The same key is used for the individual channel ON/OFF set-up, simplifying the supply operation.
Protection Features

> **Power-up self-test**
> At power-up, the XMP runs an extensive self-test routine to assure proper functioning.

> **On-the-fly self-tests**
> As the system operates, self-tests are constantly being performed, without interfering with normal operation.

> **User initiated self-tests**
> Upon user request, the XMP performs an extensive self-test without interfering with normal operation.

> **Five programmable current limitations**
> For optimal load protection, one of five types of current limitation can be programmed for each output.

> **Automatic (or programmable) OV and OC protection**
> Over Voltage and Over Current protection values are user programmable. By default they are auto tracking, being Vset+10% for the voltage protection, and Iset+10% for the current protection. In the event of OV or OC, the corresponding output shuts down.

> **Sense disconnect protection**
> Sense lines are provided to compensate for distribution lines voltage drops. Immediate module shut down occurs in the event of excessive voltage drop on the sense lines.

> **Output disconnect relays**
> In case of channel shutdown, the output relays disconnect immediately.

> **Selectable output group shuts down together in case of failure**
> Modules that are grouped together shut down if any one of the modules fails.

> **Programmable shutdown on non-fault events**
> The XMP can treat non-fault events (i.e. warning events) as faults and activate its shutdown mechanism. For example, combining this feature with the work point window warning mechanism provides UVP and UCP.

> **Low Acoustic Noise Operation**
> The XMP’s unique cooling strategy operates silently by independently controlling the speed of each of its three fans.

> **Active current sinking for fast response**
> It discharges output/load capacitors at down-programming.

> **Power Factor Correction (PFC)**
> Keeps the mains current to a minimal value with reduced harmonic distortion (IEC555).

> **Local operation lockout**
> Prevents unintentional programming from the front panel.

> **Global ON/OFF**
> Removing power from all outputs is as easy as pressing a button, or sending the OUT 0 command.

> **Programmable events generation**
> Protection faults and warning alarms can generate SRQ over the GPIB. The activating conditions (mask) for the alarms and the SRQ generation are user programmable.

> **Controller communications monitoring**
> When communications with its controller have timed-out, a variety of responses can be selected for the XMP.

> **ON/OFF output hardware indication**
> A hardware output indication is provided regarding the operation of the system. In the event of a failure, this feature allows you to turn off other equipment.

> **Over heating protection**
> In case the temperature rises over the allowed level, the system is shut down until the temperature decreases sufficiently. Then the system resumes operation.

> **Power envelope protection**
> The overall power available from the XMP is continuously monitored. If the 2.4 kW limit is briefly violated (up to 2,600 W for up to 30 sec.), the host is alerted. If the power limit is severely violated (either more than 2.4 kW for longer than 30 sec. or more than 2.6 kW peak power) the system alerts the host and shuts down.

> **Mains voltage out-of-range protection**
> The XMP will shut down when the mains is out of voltage range.
General Specifications

Mains Operation

<table>
<thead>
<tr>
<th>AC Input</th>
<th>170 V-265 V</th>
<th>Iin < 20 A nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>120 V, Po < 1 kW</td>
<td>Iin < 15 A nominal</td>
</tr>
</tbody>
</table>

* Below the minimum specified input voltage range, consult factory for derating information.

<table>
<thead>
<tr>
<th>Mains frequency</th>
<th>45 to 66 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power cord length</td>
<td>2 m</td>
</tr>
<tr>
<td>Power Factor Correction (PFC)</td>
<td>Power factor correction to meet EN61000-3-2 Current Harmonics and EN61000-3-3 Voltage Fluctuations (IEC555)</td>
</tr>
<tr>
<td>Inrush Current</td>
<td>Up to 100% of specified nominal current</td>
</tr>
<tr>
<td>Input Mains Protection</td>
<td>Circuit breaker switch on the front panel</td>
</tr>
</tbody>
</table>

Environmental Conditions

<table>
<thead>
<tr>
<th>Storage temperature</th>
<th>-20°C to 70°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>0°C to 55°C (LCD to 50°C)</td>
</tr>
<tr>
<td>Derate output current/power</td>
<td>1% per °C from 30°C to 55°C</td>
</tr>
</tbody>
</table>

Regulatory Approvals

European Standards:
- EN61000-3-2: 2000
- EN61000-3-3: 1995

Safety Agency Compliance
- European Standards: Meets EN61010-1
- American Standards: Meets FCC Class A
- Safety: Meets UL61010-1

Temperature Coefficient

<table>
<thead>
<tr>
<th>Voltage Programming</th>
<th>0.01% per °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Programming</td>
<td>0.02% per °C</td>
</tr>
<tr>
<td>Voltage Readback</td>
<td>0.01% per °C</td>
</tr>
<tr>
<td>Current Readback</td>
<td>0.02% per °C</td>
</tr>
</tbody>
</table>

Long Term Drift

Output change after 30 min. warm-up, over an interval of 8 hours under constant load, line and temperature conditions is 0.03%.

Remote Sensing

Up to 4V can be dropped over the two load lines together (i.e. 1.5V + 2.5V). At 2.5V a warning event will be generated, alerting over sense voltage drop condition, and at 4V the module will be shut down. The load lines drop subtracts from the voltage available for the load.

Output Programming Response Time

Rise and fall time with full resistive load (10 to 90% and 90 to 10%) is 30-640 mSec.

Isolation

Output terminals can be floated up to +/- 240 VDC from chassis ground

Warranty

Three years

* Data subject to change without notice.
Modules Specifications *(1,2)*

<table>
<thead>
<tr>
<th>Module Order Code</th>
<th>A1</th>
<th>B1</th>
<th>C1</th>
<th>D1</th>
<th>E1</th>
<th>A2</th>
<th>B2</th>
<th>C2</th>
<th>D2</th>
<th>E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Ratings</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>160 W</td>
<td>180 W</td>
<td>180 W</td>
<td>200 W</td>
<td>200 W</td>
<td>320 W</td>
<td>360 W</td>
<td>360 W</td>
<td>400 W</td>
<td>400 W</td>
</tr>
<tr>
<td>Voltage</td>
<td>8 V</td>
<td>18 V</td>
<td>36 V</td>
<td>80 V</td>
<td>160 V</td>
<td>8 V</td>
<td>18 V</td>
<td>36 V</td>
<td>80 V</td>
<td>160 V</td>
</tr>
<tr>
<td>Current</td>
<td>20 A</td>
<td>10 A</td>
<td>5 A</td>
<td>2.5 A</td>
<td>1.25 A</td>
<td>40 A</td>
<td>20 A</td>
<td>10 A</td>
<td>5 A</td>
<td>2.5 A</td>
</tr>
<tr>
<td>Programming Accuracy</td>
<td></td>
</tr>
<tr>
<td>Voltage (0.03% of Vmax...)</td>
<td>3 mV</td>
<td>7 mV</td>
<td>12 mV</td>
<td>26 mV</td>
<td>60 mV</td>
<td>5 mV</td>
<td>10 mV</td>
<td>15 mV</td>
<td>30 mV</td>
<td>65 mV</td>
</tr>
<tr>
<td>OVP (2% of Vmax...)</td>
<td>90 mV</td>
<td>180 mV</td>
<td>340 mV</td>
<td>740 mV</td>
<td>980 mV</td>
<td>90 mV</td>
<td>181 mV</td>
<td>342 mV</td>
<td>744 mV</td>
<td>988 mV</td>
</tr>
<tr>
<td>Current (0.12% of Imax...)</td>
<td>8 mA</td>
<td>4 mA</td>
<td>2 mA</td>
<td>1 mA</td>
<td>0.5 mA</td>
<td>24 mA</td>
<td>9 mA</td>
<td>5 mA</td>
<td>3 mA</td>
<td>2 mA</td>
</tr>
<tr>
<td>OCP (2% of Imax...)</td>
<td>16 mA</td>
<td>8 mA</td>
<td>4 mA</td>
<td>2 mA</td>
<td>1 mA</td>
<td>32 mA</td>
<td>16 mA</td>
<td>8 mA</td>
<td>4 mA</td>
<td>2 mA</td>
</tr>
<tr>
<td>Average Programming Resolution</td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>2.5 mV</td>
<td>12 mV</td>
<td>15 mV</td>
<td>24 mV</td>
<td>122 mV</td>
<td>2.5 mV</td>
<td>12 mV</td>
<td>15 mV</td>
<td>24 mV</td>
<td>122 mV</td>
</tr>
<tr>
<td>OVP</td>
<td>2.5 mV</td>
<td>12 mV</td>
<td>15 mV</td>
<td>24 mV</td>
<td>122 mV</td>
<td>2.5 mV</td>
<td>12 mV</td>
<td>15 mV</td>
<td>24 mV</td>
<td>122 mV</td>
</tr>
<tr>
<td>Current</td>
<td>15 mA</td>
<td>12.5 mA</td>
<td>2.25 mA</td>
<td>1.63 mA</td>
<td>1.31 mA</td>
<td>20 mA</td>
<td>15 mA</td>
<td>12.5 mA</td>
<td>2.25 mA</td>
<td>1.63 mA</td>
</tr>
<tr>
<td>OCP</td>
<td>15 mA</td>
<td>12.5 mA</td>
<td>2.25 mA</td>
<td>1.63 mA</td>
<td>1.31 mA</td>
<td>20 mA</td>
<td>15 mA</td>
<td>12.5 mA</td>
<td>2.25 mA</td>
<td>1.63 mA</td>
</tr>
<tr>
<td>Ripple and Noise (20 Hz to 20 MHz)</td>
<td></td>
</tr>
<tr>
<td>Rms</td>
<td>1.8 mV</td>
<td>2 mV</td>
<td>2.5 mV</td>
<td>7 mV</td>
<td>12 mV</td>
<td>2 mV</td>
<td>2.5 mV</td>
<td>4 mV</td>
<td>12 mV</td>
<td>25 mV</td>
</tr>
<tr>
<td>Peak-Peak</td>
<td>12 mV</td>
<td>14 mV</td>
<td>19 mV</td>
<td>42 mV</td>
<td>85 mV</td>
<td>13 mV</td>
<td>15 mV</td>
<td>25 mV</td>
<td>70 mV</td>
<td>150 mV</td>
</tr>
<tr>
<td>Load Regulation</td>
<td></td>
</tr>
<tr>
<td>Constant voltage</td>
<td>1.5 mV</td>
<td>1.8 mV</td>
<td>2 mV</td>
<td>3 mV</td>
<td>6 mV</td>
<td>1.5 mV</td>
<td>2 mV</td>
<td>2.5 mV</td>
<td>4 mV</td>
<td>7 mV</td>
</tr>
<tr>
<td>Constant current</td>
<td>8 mA</td>
<td>4 mA</td>
<td>2 mA</td>
<td>1 mA</td>
<td>0.5 mA</td>
<td>18 mA</td>
<td>10 mA</td>
<td>6 mA</td>
<td>3 mA</td>
<td>2 mA</td>
</tr>
<tr>
<td>Line Regulation</td>
<td></td>
</tr>
<tr>
<td>Constant voltage</td>
<td>2 mV</td>
<td>2.5 mV</td>
<td>3 mV</td>
<td>4 mV</td>
<td>6 mV</td>
<td>2.5 mV</td>
<td>3 mV</td>
<td>3.5 mV</td>
<td>5 mV</td>
<td>7 mV</td>
</tr>
<tr>
<td>Constant current</td>
<td>8 mA</td>
<td>4 mA</td>
<td>2 mA</td>
<td>1 mA</td>
<td>0.5 mA</td>
<td>18 mA</td>
<td>10 mA</td>
<td>6 mA</td>
<td>3 mA</td>
<td>2 mA</td>
</tr>
<tr>
<td>Readback Accuracy</td>
<td></td>
</tr>
<tr>
<td>Voltage readback (0.03% of Vmax...)</td>
<td>6 mV</td>
<td>12 mV</td>
<td>23 mV</td>
<td>42 mV</td>
<td>85 mV</td>
<td>12 mV</td>
<td>24 mV</td>
<td>46 mV</td>
<td>90 mV</td>
<td>180 mV</td>
</tr>
<tr>
<td>Current readback (0.12% of Imax...)</td>
<td>8 mA</td>
<td>4 mA</td>
<td>2 mA</td>
<td>1 mA</td>
<td>0.5 mA</td>
<td>26 mA</td>
<td>9 mA</td>
<td>5 mA</td>
<td>3 mA</td>
<td>2 mA</td>
</tr>
<tr>
<td>Average Readback Resolution</td>
<td></td>
</tr>
<tr>
<td>Voltage readback</td>
<td>2.5 mV</td>
<td>12 mV</td>
<td>15 mV</td>
<td>24 mV</td>
<td>122 mV</td>
<td>2.5 mV</td>
<td>12 mV</td>
<td>15 mV</td>
<td>24 mV</td>
<td>122 mV</td>
</tr>
<tr>
<td>Current readback</td>
<td>15 mA</td>
<td>12.5 mA</td>
<td>2.25 mA</td>
<td>1.63 mA</td>
<td>1.31 mA</td>
<td>20 mA</td>
<td>15 mA</td>
<td>12.5 mA</td>
<td>2.25 mA</td>
<td>1.63 mA</td>
</tr>
</tbody>
</table>
Power Output Ratings

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
<th>Output</th>
<th>(\text{Load Regulation}) [%]</th>
<th>(\text{Peak-Peak}) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 V</td>
<td>10 A</td>
<td>160 W</td>
<td>40.0</td>
<td>100.0</td>
</tr>
<tr>
<td>12 V</td>
<td>20 A</td>
<td>360 W</td>
<td>20.0</td>
<td>50.0</td>
</tr>
<tr>
<td>16 V</td>
<td>30 A</td>
<td>600 W</td>
<td>10.0</td>
<td>25.0</td>
</tr>
<tr>
<td>20 V</td>
<td>40 A</td>
<td>800 W</td>
<td>5.0</td>
<td>12.5</td>
</tr>
<tr>
<td>24 V</td>
<td>50 A</td>
<td>1000 W</td>
<td>2.5</td>
<td>5.0</td>
</tr>
<tr>
<td>28 V</td>
<td>60 A</td>
<td>1200 W</td>
<td>1.25</td>
<td>3.125</td>
</tr>
<tr>
<td>32 V</td>
<td>70 A</td>
<td>1400 W</td>
<td>0.625</td>
<td>1.5625</td>
</tr>
<tr>
<td>36 V</td>
<td>80 A</td>
<td>1600 W</td>
<td>0.3125</td>
<td>0.78125</td>
</tr>
</tbody>
</table>

Specifications

- Specifications subject to change without notice.
- Specifications refer to a chassis with only the specified module installed, with nominal resistive load (90% of rated current at the rated voltage) and the power supply sensing locally at the rear terminals, at 25°C.
- The time it takes for the output to recover within 75 mV of its previous level following a step change in load current of up to 10% of the rated module's current.
- The maximum output power is limited by the mainframe power envelope.
Mechanical Specifications

Dimensions without feet (H x W x D) 5.25 x 19 x 22.5 in (132.6 x 482.6 x 570.0 mm)

Weight

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMP mainframe with controller</td>
<td>26.2 lb</td>
</tr>
<tr>
<td>1/8 width module</td>
<td>3.9 lb</td>
</tr>
<tr>
<td>2/8 width module</td>
<td>5.5 lb</td>
</tr>
<tr>
<td>3/8 width module</td>
<td>7.5 lb</td>
</tr>
</tbody>
</table>
Ordering Codes

Mainframe Controller

Power Envelope Code:
- 1 = 2.4 kW Continuous, 2.6 kW Intermittent

Front panel option
- 0 = Full front panel with keyboard
- 2 = Slave expansion mainframe blank front panel which has only line switch and line indicator.

Relays option
- Y = Module with disconnect and a polarity relays

Current code (1 to 5)
- See table below for output current codes

Voltage code
- A = 0-8V
- B = 0-18V
- C = 0-36V
- D = 0-80V
- E = 0-160V

Number of outputs per XMP mainframe with controller
- 01 = 1 Output
- 02 = 2 Outputs
- 03 = 3 Outputs
- 04 = 4 Outputs
- 05 = 5 Outputs
- 06 = 6 Outputs
- 07 = 7 Outputs
- 08 = 8 Outputs

Power Modules Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-8 V</td>
<td>A</td>
<td>20 A</td>
<td>40 A</td>
<td>80 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-18 V</td>
<td>B</td>
<td>10 A</td>
<td>20 A</td>
<td>40 A</td>
<td>80 A</td>
<td></td>
</tr>
<tr>
<td>0-36 V</td>
<td>C</td>
<td>5 A</td>
<td>10 A</td>
<td>20 A</td>
<td>40 A</td>
<td>80 A</td>
</tr>
<tr>
<td>0-80 V</td>
<td>D</td>
<td>2.5 A</td>
<td>5 A</td>
<td>9 A</td>
<td>20 A</td>
<td>40 A</td>
</tr>
<tr>
<td>0-160 V</td>
<td>E</td>
<td>1.25 A</td>
<td>2.5 A</td>
<td>4.5 A</td>
<td>10 A</td>
<td>20 A (*)</td>
</tr>
</tbody>
</table>

* (4) - The maximum output power is limited by the mainframe power envelope.

Accessories:
- **XMP TM** Operator's Manual: One Operator’s Manual included with the instrument
- **XMP LCON** One Output (load) connector: (One connector already supplied with each module)
- **XMP GPIB CBL** GPIB cable: (1 m)
- **XMP RM** Sliding rails for rack mounting
- **XMP NET CBL** Extention net communication cable: (1.2 m)

XMP 2600 Order Example:

X M P	0	4	A	Y	B	1	Y	B	2	Y	C	2	Y	0	0	1	1				
XMP																					
with 4 outputs																					
0-8V/20A with relays																					
0-18V/10A with relays																					
0-36V/10A with relays																					
Full front panel with keyboard																					

Mainframe controller power envelope:
- 2.4 kW continuous, 2.6 kW intermittent

Source: Xantrex
About Xantrex

Xantrex Technology has been building advanced power electronics since 1983. Whether for the lab bench or for a computer-controlled console of rack-mounted test equipment, Xantrex offers the industry’s most advanced designs of DC power supplies. A privately-owned company with 600 employees, Xantrex is headquartered in Vancouver, British Columbia.

Xantrex Technology Inc.
Headquarters
8999 Nelson Way
Burnaby, British Columbia
Canada V5A 4B5
604 422 8595 Phone
604 421 3056 Fax

5916 195th Northeast
Arlington, Washington
USA 98223

161- G South Vasco Road
Livermore, California
USA 94550

www.xantrex.com